A Block-Diagonal Algebraic Multigrid Preconditioner for the Brinkman Problem
نویسندگان
چکیده
The Brinkman model is a unified law governing the flow of a viscous fluid in cavity (Stokes equations) and in porous media (Darcy equations). In this work, we explore a novel mixed formulation of the Brinkman problem by introducing the flow’s vorticity as an additional unknown. This formulation allows for a uniformly stable and conforming discretization by standard finite element (Nédélec, Raviart-Thomas, discontinuous piecewise polynomials). Based on the stability analysis of the problem in the H(curl)−H(div)− L2 norms ([24]), we study a scalable block diagonal preconditioner which is provably optimal in the constant coefficient case. Such preconditioner takes advantage of the parallel auxiliary space AMG solvers for H(curl) and H(div) problems available in hypre ([11]). The theoretical results are illustrated by numerical experiments.
منابع مشابه
Component-wise algebraic multigrid preconditioning for the iterative solution of stress analysis problems from microfabrication technology
A methodology for preconditioning discrete stress analysis systems using robust scalar algebraic multigrid (AMG) solvers is evaluated in the context of problems that arise in microfabrication technology. The principle idea is to apply an AMG solver in a segregated way to the series of scalar block matrix problems corresponding to different displacement vector components, thus yielding a block d...
متن کاملA Comparison of Three Solvers for the Incompressible Navier-Stokes Equations
Three solvers for saddle point problems arising from the linearization and discretization of the steady state incompressible Navier–Stokes equations are numerically studied. The numerical tests are based on nonconforming finite element approximations of lowest order in two–dimensional domains using isotropic meshes. The investigated solvers are coupled multigrid methods with Vanka–type smoother...
متن کاملAlgebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media
An algebraic multilevel (ML) preconditioner is presented for the Helmholtz equation in heterogeneous media. It is based on a multilevel incomplete LDLT factorization and preserves the inherent (complex) symmetry of the Helmholtz equation. The ML preconditioner incorporates two key components for efficiency and numerical stability: symmetric maximum weight matchings and an inverse-based pivoting...
متن کاملBlock-diagonal preconditioning for spectral stochastic finite-element systems
Deterministic models of fluid flow and the transport of chemicals in flows in heterogeneous porous media incorporate partial differential equations (PDEs) whose material parameters are assumed to be known exactly. To tackle more realistic stochastic flow problems, it is fitting to represent the permeability coefficients as random fields with prescribed statistics. Traditionally, large numbers o...
متن کاملAlgebraic Multigrid Preconditioners for Multiphase Flow in Porous Media
Multiphase flow is a critical process in a wide range of applications, including carbon sequestration, contaminant remediation, and groundwater management. Typically, this process is modeled by a nonlinear system of partial differential equations derived by considering the mass conservation of each phase (e.g., oil, water), along with constitutive laws for the relationship of phase velocity to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013